
subpopulations. For m¼ 100 markers and substantial strat-

ification, R2 was ~0.19 when highly ancestry-informative

markers were used, regardless of MAF, and 0.12 for random

markers with Fst ¼ 0.03. Under moderate stratification, the

R2 values were 0.07 for highly ancestry-informative

markers, and 0.04 for random markers. As m increased,

the R2 values dropped even further. These relatively low

values were apparently enough to provide error-control

correction for the simulations reported in EAS, and other

measures of correspondence than R2 might be preferred.

Nonetheless, these results further call into question the ro-

bustness of the PLS procedure, in which the stratification

score does not strongly reflect the true stratification.

In summary, we conclude that aspects of the EAS

method may be worthy of further exploration and devel-

opment. However, in its present form, we have concerns

about the routine use of StratScore, especially in the con-

text of genome-wide scans. At the very least, the genomics

community should be aware of the potential for power loss

and sensitivity to the number of ancestry-informative

markers employed. Additional, larger simulations in the

context of whole-genome scans are necessary to provide

convincing comparisons of the major approaches for con-

trolling spurious association in case-control association

studies.
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Table 4. Power under Substantial and Moderate Stratification

Marker Type and Test Locus MAF Known Strata

StratScore with

100 SNPs

StratScore with

200 SNPs

StratScore with

500 SNPs

StratScore with

800 SNPs

Highly Ancestry Informative

0.1 0.691 (0.670) 0.67 (0.643) 0.619 (0.580) 0.403 (0.382) 0.243 (0.226)

0.25 0.914 (0.914) 0.902 (0.888) 0.871 (0.848) 0.648 (0.609) 0.412 (0.360)

0.4 0.953 (0.958) 0.940 (0.941) 0.911 (0.915) 0.702 (0.708) 0.437 (0.430)

Random

0.1 0.678 (0.688) 0.739 (0.700) 0.650 (0.617) 0.404 (0.383) 0.230 (0.200)

0.25 0.914 (0.910) 0.932 (0.914) 0.883 (0.863) 0.634 (0.620) 0.376 (0.345)

0.4 0.959 (0.952) 0.967 (0.949) 0.937 (0.915) 0.719 (0.709) 0.430 (0.395)

Power results at nominal a ¼ 0.05 for 500 cases and 500 controls. The test locus has Fst ¼ 0.03 and confers an odds ratio of 1.4 for each risk allele. Each

entry shows the power under substantial stratification, followed by the power under moderate stratification in parentheses.
Response to Lee et al.

To the Editor: We thank Drs. Lee, Sullivan, Zou, and Wright

(LSZW) for their letter, and for this opportunity to further

discuss the use of stratification scores to control for con-

founding. We also take this opportunity to discuss the gen-

eral question of model selection for stratification scores.
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Although LSZW raise important points, we wish to start

by objecting to their characterization of the stratification

score as the output of partial least-squares regression

(PLS). The stratification score defined by Epstein et al.1

(EAS) is simply a model for P[DjZ] where Z are markers

(or potentially other covariates) used to control for con-

founding by population stratification and D is an indicator

of disease status. We used a particular PLS-based procedure
y 2008



for our calculations, but we stressed that any model, such

as logistic regression or even random forests, can be used

to calculate the stratification score.

With this in mind, we address criteria for determining

what is a ‘‘good’’ model choice for a stratification score.

As LSZW correctly demonstrate, prediction of D cannot

be the goal, because the ‘‘best’’ model by this criterion

would provide near-perfect prediction of D; poststratifica-

tion use of such a score will result in most strata having

only cases or only controls. This results in a loss of power

when association is assessed because up to four-fifths of ob-

servations are in (nearly) uninformative strata. This raises

the question: What is a good model for the stratification

score?

Some guidance comes from distinguishing between pop-

ulation stratification and confounding by population strat-

ification. Population stratification occurs whenever there is

variation in allele frequencies that is explained by (typically

unmeasured) covariates U. Confounding only occurs when

U also accounts for some of the variability in D. Unfortu-

nately, this means that a ‘‘good’’ stratification-score model

is one that accounts for the variability in D that is caused

by U, but not for any of the residual variation in D. Without

knowing U, it is difficult to determine what variability in D

the stratification score should explain. However, one clue is

that variables used in the stratification-score model should

explain variation in both D and the test-locus genotype G.

Thus, we seek a stratification score that is a linear combina-

tion of marker genotypes Z and explains variability in both

D and G.

After evaluating a wide range of possible stratification

scores in simulated data, we propose the following ap-

proach: Use both D and G as the dependent variables in

a PLS model (PLS allows multivariate dependent variables),

and then use the first PLS component as the stratification

score. We first confirmed that this proposal preserves size

by using the simulated data from our original paper (results

not shown). To evaluate the power of this proposal, as well

as the effect of changing the number of markers, we simu-

lated data from the following model. We assumed that ge-

notype frequencies for both substructure markers (Z) and

a test locus (G) were influenced by two continuous axes.

Specifically, if Ajk is the maternal (k ¼ 1) or paternal (k ¼ 2)

allele at the jth marker locus, we assumed that the probabil-

ity of a ‘‘1’’ allele was given by

logit
�

P
�
Ajk ¼ 1 j r1,r2

��
¼ g0j þ g1r1j þ 0:2 , r2j,

j ¼ 1,., M and k ¼ 1, 2

with marker genotype at the jth locus given by Zj ¼ Aj1 þ
Aj2, and where r1j and r2j are independent standard normal

random variables. The values of g0j were chosen to mimic

allele frequencies in the data of Akey et al.2 We generated

genotypes at a trait locus by using the same model, with

g0 ¼ �0.4 corresponding to a baseline minor-allele fre-

quency of about 0.40. We then prospectively generated

disease outcome for participants by using the model
The Am
ln
Pr½D ¼ 1 j r1,r2�
Pr½D ¼ 0 j r1,r2�

¼ �4:6þ 0,r1 þ 0:2,r2 þ lnð1:2ÞG,

which corresponds to a baseline disease prevalence of

~0.01. Notice that r2 is a confounder but r1 is not within

our simulation model.

We simulated disease and marker data (assuming either

100 markers or 500 markers) by using g1 ¼ 1, 1.5, 2 and

generated data until 1000 case and 1000 control partici-

pants had been recruited. We then analyzed the data by

using our original EAS approach, our joint (D, G) approach,

principal components,3 and a gold standard correspond-

ing to the situation in which we knew the true r2 con-

founder and adjusted for it appropriately within analysis.

We repeated this procedure 1000 times. The estimated

power results are given in Table 1.

The table shows that use of the first PLS component from

a joint model for D and G clearly outperforms the stratifi-

cation score used previously in EAS. In addition, the perfor-

mance of the joint (D, G) approach does not degrade as the

number of markers increase (some decrease in performance

between 100 ancestry-informative markers (AIMs) and

500 AIMs is shared by all methods, even the approach

that conditions on the usually unknown true confounder

r2). Although our approach slightly outperforms principal

components, this difference is slight.

Finally, we confirmed that the stratification score ob-

tained as the first PLS component in the joint (D, G) model

controlled confounding in the association between height

and the LCT (MIM 603202) single-nucleotide polymor-

phism (SNP) rs4988235 reported by Campbell et al.4 We

found that the p value for this analysis was 0.28, which

compares favorably with that obtained in EAS. Recall that

the p value obtained when principal components were

used was 0.003.

We close with two discussion points. First, we have con-

fined our discussion here to AIMs and have not considered

random markers. It seems reasonable to us that, compared

with AIMS, random markers would be more likely to ex-

plain variation in D that was not due to confounding.

Thus, their use may be a threat to efficiency. Second, exam-

ination of Table 1 shows clearly that all currently available

methods fall far short of the power available when the

Table 1. Power under the Stratification Model

Analysis

100 AIMs (g1) 500 AIMs (g1)

1.0 1.5 2.0 1.0 1.5 2.0

EAS 34.4 22.3 12.0 12.7 8.0 7.0

joint (D, G) model 48.5 43.1 37.7 43.0 43.4 37.6

Principal Components 47.7 40.4 37.3 41.9 41.9 35.7

analysis conditional on r2 64.3 64.3 58.5 56.4 62.3 68.8

Estimated power at size a ¼ 0.05 for 1000 datasets generated with our

simulation model for four analyses: the original stratification score of EAS,

the new stratification score proposed here, principal components, and a

logistic regression that conditions on the true confounder r2.
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true confounder r2 is known. This indicates to us that there

is much additional work that can be done to investigate the

question of model selection for the stratification score.

Michael P. Epstein,1,*Andrew S. Allen,2 and

Glen A. Satten3

1Department of Human Genetics, Emory University,

Atlanta, GA 30322, USA; 2Department of Biostatistics

and Bioinformatics and Duke Clinical Research Institute,

Duke University, Durham, NC 27708, USA; 3Centers for

Disease Control and Prevention, Atlanta, GA 30341, USA

*Correspondence: mepstein@genetics.emory.edu

Acknowledgments

Any opinions expressed in this paper are those of the authors and

do not necessarily represent the views of the Centers for Disease

Control and Prevention.
XMCPDT Does Have Correct
Type I Error Rates

To the Editor: In the January 2007 issue of the Journal,

Chung et al.1 compared X-APL proposed by them to

XMCPDT proposed by Ding et al.2 Based on their simulation

results, they stated that with use of allele frequencies esti-

mated from observed parental genotypes, XMCPDT would

give inflated type I error rates. Here we wish to point out

that use of estimated allele frequencies is not the cause of

inflated type I error rates. Rather, the actual cause was the se-

vere violation of the XMCPDT assumption in their simula-

tion settings, which was discussed at length in Ding et al.2

As explicitly stated there, one assumption for XMCPDT to

be a valid test for association under linkage is that ‘‘the ped-

igrees in a study are assumed to be drawn from a population

of (extended) families, each of whichhasat leastone affected

offspring.’’ They went on to say, ‘‘Otherwise, bias may exist,

especially when all families have the same structure and

affection pattern, which, fortunately, is not the case in a ge-

netic study that collects pedigrees of all shapes and sizes and

affection patterns.’’ To study the robustness of the test statis-

tic to departure from the assumption, Ding et al.2 investi-

gated trios as well as families with six children and con-

cluded that ‘‘in a genetic study with pedigree data, bias

should be negligible, and the proposed test statistic may be

safely used.’’ However, the simulation settings in Chung

et al.,1 which fixed the affection statuses of the offspring, se-

verely violated the assumption, leading to appreciable bias.

A fuller dissection of the assumption of Ding et al.2 is

needed in order to facilitate understanding of why the

settings in Chung et al.1 constitute severe violations. The

sampling assumption treats affection status of a given fam-

ily structure as a random event, and as such, all sorts of

affection patterns are permitted. For example, for nuclear
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families with three children (a setting in Table 4 of Chung

et al.1), under the assumption, one would expect some

families having one, some having two, and some having

all three children being affected. However, Chung et al.1

only allow exactly two of the three children in each of

the nuclear families to be affected, thus severely violating

the assumption. Such a restriction on the affection status

appears to be rather unrealistic in a genetic epidemiolog-

ical study, as it is unlikely that a family with three chil-

dren would only be included in the study if exactly two

of the three children were affected. With inclusion of

one-affected and three-affected families, the power is ex-

pected to increase substantially. More importantly, as dem-

onstrated below through simulations, it is in fact X-APL

that gave inflated type I error rates when the XMCPDT

assumption was roughly satisfied, especially when data

from extended families were included.

Our first simulation setting made use of the same family

structure, discussed above, as that of Chung et al.,1 but

ours allowed for one-affected and three-affected families

to be included in addition to the two-affected ones. One

hundred nuclear families, each with two parents and three

offspring, were simulated in each replicate. Among those

100 families, 25 had three male offspring, 25 had two

male and one female offspring, 25 had one male and two

female offspring, and the remaining 25 had three female

offspring. Furthermore, parents in 50 of the families had

observed genotypes, and those in the other 50 families

did not. The disease models were the same as those in Table

1 of Chung et al.1 For each of the four family types, we sim-

ulated the data until we had 25 families, each with at least

one affected offspring. The disease locus was used to calcu-

late powers. In addition to the disease locus, a marker with

the same allele frequencies and in complete linkage and

linkage equilibrium was also simulated and used to calcu-

late type I error rates. The second simulation setting had

y 2008
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